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Abstract

The virtual element method (VEM) is a numerical methodology for solving partial differential equations on unstructured polytopal
meshes. In this work, we extend the nonconforming high-order formulation suitable to time-dependent diffusion problems with
possibly nonlinear forcing terms. Coupling high-order virtual element formulations in space with time-marching schemes based
on Backward Differention Formulas (BDFs) makes a fully discrete method with optimal order of convergence in the Method of
Lines framework. We investigate and assess the performance of the method thorugh theoretical analysis and a set of numerical
experiments.
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1. Introduction

In the last decade, the scientific literature concerning the numerical approximation of partial differential equations
has been characterized by the growing interest in methods that use polygonal and polyhedral meshes instead of trian-
gular and quadrilateral or tetrahedral and hexahedral grids. This interest in the literature is also reflected in commercial
and production codes that have recently included polytopal meshes or implement special gridding techniques such as
FLOW3D (see [48] for an application to saturated-unsaturated groundwater flow simulations). Indeed, numerical
formulations suited to polytopal meshes offer a number of significant advantages such as a simpler meshing of the
domain, also including local mesh adaptivity and nonconforming grids without requiring any special treatment for the
hanging nodes.

A very effective approach to design numerical methods for polytopal meshes is provided by the virtual element
method (VEM), which was proposed in [7] as a variational reformulation of the nodal mimetic finite difference
(MFD) method [16, 21, 31, 40, 43, 45] for solving diffusion problems on unstructured polygonal meshes. A survey
on the MFD method can be found in the review paper [44] and the research monograph [17]. The VEM inherits the
flexibility of the MFD method with respect to the admissible meshes, and, inspite of its recent origin, significant new
developments have already taken place, see, for example, [3, 4, 8–15, 18–20, 22–25, 27–29, 32, 47, 52, 53]. Moreover,
the connection between VEM and finite elements on polygonal/polyhedral meshes is thoroughly investigated in [35,
37, 46], and between VEM and BEM-based FEM method in [34]. The VEM was originally formulated in [7] as
a conforming FEM for the Poisson problem. It was later extended to convection-reaction-diffusion problems with
variable coefficients in [2, 14]. Meanwhile, the nonconforming formulation for diffusion problems was proposed
in [6] as the finite element reformulation of [42] and later extended to general elliptic problems [36], convection-



dominated advection-diffusion-reaction equations [26], Stokes problem [33], eigenvalue problems [38, 39, 51], and
the biharmonic equation [5, 54].

In this article, we extend the non-conforming VEM to two-dimensional parabolic problems such as the time-
dependent diffusion equation with possibly nonlinear forcing terms. The VEM is based on two discrete bilinear forms,
which respectively approximate the “grad-grad” bilinear form of the pure elliptic case and the L2 scalar product. This
latter is built by using the enhancements technique. We investigate the convergence of the time-dependent approxi-
mation by deriving an estimate of the approximation error in the semi-discrete and fully discrete case. High-order in
time is provided in the Method of Lines framework by coupling the VEM in space with high-order time-marching
Backward Differentiation Formulas (BDFs). Numerical tests confirm the theoretical results.

The outline of the paper is as follows. In Section 2, we introduce the continuous problem. In Section 3, we present
the nonconforming virtual element method. In Section 4, we investigate the convergence of the method. In Section 5,
we assess the performance of the nonconforming VEM through a set of numerical experiments on different families
of polygonal meshes. In Section 6, we offer final comments and conclusions.

2. The continuous problem and its virtual element discretization

In this section, we describe the continuous model problem and introduce the semi-discrete virtual element ap-
proximation. Throughout the paper, we use the notation of Sobolev spaces, norms and seminorms detailed in [1]. In
particular, the symbols | · |s,ω and || · ||s,ω are the seminorm and the norm of the Sobolev space Hs(ω) defined on
the open bounded subset ω of Rd, and (·, ·)ω is the L2-inner product. If ω is the whole computational domain Ω, the
subscript may be omitted and we may denote the Sobolev seminorm and norm by | · |s and || · ||s, and the L2-inner
product by (·, ·).

Let Ω ⊂ Rd for d = 2, 3 be an open polytopal domain with Lipschitz boundary Γ. Consider the time-dependent
diffusion equation with scalar constant coefficient for the unknown variable u: Find u : Ω× [0, T ]→ R such that

ut −∆u = f(u, t) in Ω, for t ∈ (0, T ], (1)
u = 0 on Γ, for t ∈ (0, T ], (2)

u(·, t) = u0 in Ω, (3)

where ut denotes the time derivative of u, f(u, t) is the forcing term, which we assumed to be Lipschitz continuous in
the first argument, and u0 is the solution at the initial time t = 0. To ease the exposition, in the mathematical formu-
lation of the method and its convergence analysis we consider only the case of Dirichlet boundary conditions. Indeed,
the extension of our numerical method to other kind of boundary conditions is deemed straightforward. Furthermore,
the performance of the method for nonhomogeneous Dirichlet boundary conditions is illustrated in the section of
the numerical experiments. The variational formulation of problem (1)-(3) reads as: Find u ∈ L2(0, T ;H1

0 (Ω)) with
ut ∈ L2(0, T ;H−1(Ω)) such that

m(ut(t), v) + a(u(t), v) = 〈f(u, t), v〉 ∀v ∈ H1
0 (Ω), for a. e. t ∈ (0, T ), (4)

u(0) = u0, (5)

where the bilinear forms m, a : V × V → R are defined by

m(u, v) =

∫
Ω

uv dx, (6)

a(u, v) =

∫
Ω

∇u · ∇v dx, (7)

and 〈·, ·〉 denotes the duality product between H−1(Ω) and H1
0 (Ω) (or, in L2(Ω)).

The Poincaré inequality and the boundary conditions imply that the H1 seminorm is actually a norm on H1
0 (Ω),

equivalent to the usualH1 norm. Therefore, problem (4)-(5) has a unique solution due to the coercivity and continuity
of the bilinear form a on H1

0 (Ω) and the assumption that f is Lipschitz continuous with respect to u [50].
The virtual element semi-discretization of problem (4)-(5) reads as [6]: Find uh ∈ L2(0, T ;V hk ) with uh,t ∈

L2(0, T ;V hk ) such that
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mh(uh,t(t), vh) + ah(uh(t), vh) = (fh(t), vh) ∀vh ∈ V hk , for a.e. t ∈ (0, T ), (8)

uh(0) = uh,0, (9)

where V hk is the nonconforming virtual element space and mh, ah, fh, uh,0 are the approximation in the VEM setting
of the L2-inner product, the bilinear form a, the source term f , and the initial solution u(0), respectively. The next
section is devoted to the definition of these mathematical objects and the discussion of their properties.

3. The nonconforming virtual element method

In this section, we first introduce the family of mesh decompositions of the computational domain and the mesh reg-
ularity assumptions; then, we define the non-conforming virtual element space (and related approximation properties)
that we need for the proper formulation of the virtual element method, cf. [6].

3.1. Mesh definition and regularity assumptions

Let T = {Ωh}h be a family of decompositions of Ω into nonoverlapping polytopal elements P with nonintersecting
boundary ∂P, center of gravity xP, d-dimensional measure |P|, and diameter hP = supx,y∈P |x − y|. The subindex
h that labels each mesh Ωh is the maximum of the diameters hP of the elements of that mesh. The boundary of P is
formed by straight edges when d = 2 and flat faces when d = 3. The midpoint and length of each edge e are denoted
by xe and he, respectively. The center of gravity, diameter and area of each face f are denoted by xf , hf , and |f |,
respectively. Sometimes we may refer to the geometric objects forming the elemental boundary ∂P by the term side
instead of edge/face, and adopt a unified notation by using the symbol σ instead of e or f regardless of the number of
spatial dimensions. Accordingly, xσ , hσ , and |σ| denote the center of gravity, diameter, and measure of side σ.

We denote the unit normal vector to the elemental boundary ∂P by nP, and the unit normal vector to edge e, face f
and side σ by ne, nf , nσ , respectively. Each vector nP points out of P and the orientation of ne, nf , and nσ is fixed
once and for all in every mesh Ωh. Finally, Eh, Fh, and Sh denote the set of edges, faces, and sides of the skeleton of
Ωh. We may distinguish between internal and boundary sides by using the superscript 0 and ∂. Therefore, S0

h is the
set of the internal sides, S∂h the set of the boundary sides, and, obviously, S0

h ∩ S∂h = ∅ and Sh = S0
h ∪ S∂h .

Now, we state the mesh regularity assumptions that are required for the convergence analysis. Since the method
cannot be used simultaneously for d = 2 and d = 3 and, hence, no ambiguity is possible in such sense, we may refer
to the two- and three-dimensional case using the same label (A0) and the same symbol γ to denote the mesh regularity
constant. Note that the assumptions for d = 2 can be derived from those for d = 3 by reducing the spatial dimension.

(A0) Mesh regularity assumptions.

– d = 3. A positive constant % independent of h (and, hence, of Ωh) exists such that for every polyhedral element
P ∈ Ωh it holds that
(i) P is star-shaped with respect to a ball of internal points of P with radius ≥ %hP;
(ii) every face f ∈ P is star-shaped with respect to a disk of internal points of f with radius ≥ %hf ;
(iii) for every edge e ∈ ∂f of every face f ∈ ∂P it holds that he ≥ %hf ≥ %2hP.

– d = 2. A positive constant % independent of h (and, hence, of Ωh) exists such that for every polygonal element
P ∈ Ωh it holds that
(i) P is star-shaped with respect to a disk of internal points of P with radius ≥ %hP;
(ii) for every edge e ∈ ∂P it holds that he ≥ %hP.

Remark 3.1 The star-shapedness property implies that elements and faces are simply connected subsets of Rd and
R
d−1, respectively. The scaling assumption implies that the number of edges and faces in each elemental boundary is

uniformly bounded over the whole mesh family T .
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3.2. Basic setting

We introduce the broken Sobolev space for any s > 0

Hs(Ωh) =
∏

P∈Ωh

Hs(P) =
{
v ∈ L2(Ω) : v|P ∈ Hs(P)

}
,

and define the broken Hs-norm

||v||2s,h =
∑

P∈Ωh

||v||2s,P ∀ v ∈ Hs(Ωh), (10)

and for s = 1 the broken H1-seminorm

|v|21,h =
∑

P∈Ωh

||∇v||20,P ∀ v ∈ H1(Ωh). (11)

Let σ ⊂ ∂P+
σ ∩ ∂P−σ be the internal side (edge/face) shared by elements P+

σ and P−σ , and v a function that belongs
to H1(Ω). We denote the traces of v on σ from the interior of elements P±σ by v±σ , and the unit normal vectors to σ
pointing from P±σ to P∓σ by n±σ . Then, we introduce the jump operator [[ v ]] = v+

σ n
+
σ + v−σ n

−
σ at each internal side

σ ∈ S0
h, and [[ v ]] = vσnσ at each boundary side σ ∈ S∂h . The nonconforming space H1,nc(Ωh; k) for any integer

k ≥ 1 is the subspace of the broken Sobolev space H1(Ωh) defined as

H1,nc(Ωh; k) =

{
v ∈ H1(Ωh) :

∫
σ

[[ v ]] · nσ q dσ = 0 ∀ q ∈ Pk−1(σ), ∀σ ∈ Sh
}
. (12)

Since [[ v ]] = 0 on any mesh side and vΓ = 0 (in the sense of the trace theorem) whenever v belongs to H1
0 (Ω), it

trivially follows that H1
0 (Ω) ⊂ H1,nc(Ωh; k).

Hereafter, we consider the extension of the bilinear form a(·, ·) to the broken Sobolev space H1(Ωh), which is
given by splitting it as sum of local terms:

a : H1(Ωh)×H1(Ωh)→ R such that

a(u, v) =
∑

P∈Ωh

aP(u, v) where aP(u, v) =

∫
P
∇u · ∇v dx, ∀u, v ∈ H1(Ωh). (13)

Clearly, the same definition applies when at least one entry of a(·, ·) belongs to the nonconforming spaceH1,nc(Ωh; k),
which is a subspace of H1(Ωh), and the nonconforming virtual element space, which will be defined in the next sec-
tion as a subspace of H1,nc(Ωh; k).

The nonconforming space with k = 1 has the minimal regularity required for the VEM formulation and the con-
vergence analysis. It is straightforward to show that | · |1,h is a norm on H1,nc(Ωh; k), although it is only a seminorm
for the discontinuous functions of H1(Ωh). Moreover, using the Poincaré-Friedrichs inequality ||v||20 ≤ CPF |v|21,h,
which holds for every v ∈ H1,nc(Ωh; k) and some positive constant CPF independent of h, cf. [30], we can show
that | · |1,h is equivalent to || · ||1,h. Therefore, we may refer to the seminorm | · |1,h as a norm in H1,nc(Ωh; k).

According to [6], if u ∈ Hs(Ω) with s ≥ 3/2 and for any v ∈ H1,nc(Ωh; k) we find that

Nh(u(t), v) = m(ut(t), v) + a(u, v)−
〈
f, v
〉

=
∑
σ∈Sh

∫
σ

∇u · [[ v ]] ds. (14)

The quantity Nh(u, v) is called the conformity error.

We now recall an estimate for the term measuring the nonconformity.
Lemma 3.2 (See [6]) Assume (A0) is satisfied. Let u ∈ H1+s(Ω) with 1 ≤ s ≤ k be the solution of (4)-(5). Let
v ∈ H1,nc(Ωh; k), k ≥ 1, as defined in (12). Then, there exists a positive constant C independent of h such that

|Nh(u, v)| ≤ Chs|u|1+s|v|1,h, (15)

where Nh(u, v) is defined in (14). Constant C depends on the polynomial degree k and the mesh regularity factor γ.
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Throughout the paper, P`(D) denotes the space of polynomials of degree up to ` for any integer number ` ≥ 0
on the bounded connected subset D of Rν with ν = 1, 2, 3. The polynomial space P`(D) is finite dimensional
and we denote its dimension by π`,ν . It holds that π`,1 = ` + 1 for ν = 1; π`,2 = (` + 1)(` + 2)/2 for ν = 2;
π`,3 = (` + 1)(` + 2)(` + 3)/6 for ν = 3. We also conventionally take P−1(D) = {0} and π−1,ν = 0 for every
integer ν > 0. Let xD denote the center of gravity of D and hD its characteristic length, as, for instance, the edge
length for ν = 1, the face diameter for ν = 2 and the cell diameter for ν = 3. A basis for P`(D) is provided
by M`(D) = { (x− xD)/hD)

α with |α| ≤ ` }, the set of the scaled monomials of degree up to `, where α =
(α1, . . . αν) is a ν-dimensional multi-index of nonnegative integers αi with degree |α| = α1 + . . .+αν and such that
xα = xα1

1 . . . xανν for any x ∈ Rν . We will also use the set of scaled monomials of degree exactly equal to `, denoted
byM∗` (D) and obtained by setting |α| = ` in the definition ofM`(D). Finally, we denote by Π0

` : L2(P)→ P`(P)

for ` ≥ 0 the L2-orthogonal projection onto the polynomial space P`(P), and by Π0,σ
` : L2(σ) → P`(σ) for ` ≥ 0

the L2-orthogonal projection onto the polynomial space P`(σ).

3.3. Local and global nonconforming virtual element space

We construct the local nonconforming virtual element space by resorting to the so-called enhancement strategy
originally devised in [2] for the conforming VEM and later extended to the nonconforming VEM in [36]. To this end,
for any polytopal cell P ∈ Ωh and integer number k ≥ 1, we first define the finite dimensional functional space

Ṽ hk (P) =

{
v ∈ H1(P) :

∂v

∂n
∈ Pk−1(σ)∀σ ⊂ ∂P, ∆v ∈ Pk(P)

}
. (16)

The space Ṽ hk (P) contains the polynomials of degree k.
Then, we introduce the set of continuous linear functionals from Ṽ hk (P) to R that for every virtual function vh of

Ṽ hk (P) provide:
(D1) the moments of vh of order up to k − 1 on each (d− 1)-dimensional side σ ∈ ∂P:

1

|σ|

∫
σ

vhmds, ∀m ∈Mk−1(σ), ∀σ ∈ ∂P; (17)

(D2) the moments of vh of order up to k − 2 on P:

1

|P|

∫
P
vhmdx, ∀m ∈Mk−2(P). (18)

Finally, we introduce the elliptic projection operator Π∇k : Ṽ hk (P)→ Pk(P) that for any vh ∈ Ṽ hk (P) is defined by:∫
P
∇Π∇k vh · ∇q dx =

∫
P
∇vh · ∇q dx ∀q ∈ Pk(P) (19)

together with the additional conditions:∫
∂P

(Π∇k vh − vh) ds = 0 if k = 1, (20)∫
P
(Π∇k vh − vh) dx = 0 if k ≥ 2. (21)

As proved in [36], the polynomial projection Π∇k vh is computable using only the values from the linear functionals
(D1)-(D2). Furthermore, Π∇k is a polynomial-preserving operator, i.e., Π∇k q = q for every q ∈ Pk(P).

We are now ready to introduce the local nonconforming virtual element space of order k on the polytopal element
P, which is the subspace of Ṽ hk (P) defined as follow:

V hk (P) =
{
v ∈ Ṽ hk (P) such that (vh −Π∇k vh,m)P = 0 ∀m ∈M∗k−1(P) ∪M∗k(P)

}
. (22)

Space V hk (P) has the two important properties that we outline below:
(i) it still contains the space of polynomials of degree at most k;

5



(ii) the values provided by the set of continuous linear functionals (D1)-(D2) uniquely determine every function vh
of V hk (P) and can be taken as the degrees of freedom of vh.

Property (i) above is a direct consequence of the space definition, while property (ii) follows from the unisolvence
of the degrees of freedom (D1)-(D2) that was proved in [6, 36]. Additionally, the L2-orthogonal projection Π0

kvh is
computable using the degrees of freedom of vh, cf. [36], and Π0

kvh = Π∇k vh for k = 1, 2 as for the conforming VEM,
cf. [2].

Finally, the global nonconforming virtual element space V hk of order k ≥ 1 subordinate to the mesh Ωh is obtained
by gluing together the elemental spaces V hk (P) to form a subspace of the nonconforming space H1,nc(Ωh; k). The
formal definition reads as:

V hk :=
{
vh ∈ H1,nc(Ωh; k) : vh|P ∈ V hk (P) ∀P ∈ Ωh

}
. (23)

A set of degrees of freedom for V hk is given by collecting the values from the linear functionals (D1) for all the mesh
sides and (D2) for all the mesh elements. The unisolvence of degrees of freedom (17)-(18) for V hk is an immediate
consequence of their unisolvence on each local space V hk (P). Thus, the dimension of V hk is equal toNS×πk−1,d−1 +
NP ×πk−2,d, where NS is the total number of sides, and π`,ν is the dimension of the space of polynomials of degree
up to ` inRν .

Remark 3.3 The set of degrees of freedom can be properly redefined by excluding the moments on theNS,∂ boundary
sides, i.e., for σ ∈ S∂h , which are set to zero to impose the homogeneous Dirichlet boundary condition (2). This reduces
the dimension of V hk to NS,0 × πk−1,d−1 +NP × πk−2,d.

3.4. Approximation properties

Both for completeness of exposition and future reference in the paper, we briefly summarize a few local approxi-
mation properties for the virtual nonconforming space. We omit here any detail about the derivation of these estimates
and refer the interested readers to References [2, 6, 7] and the references therein.

Local polynomial approximations. On a given element P ∈ Ωh, consider the function v ∈ Hs(P) with 1 ≤ s ≤ k+1.
Under mesh assumptions (A0), there exists a piecewise polynomial approximation that is of degree k on each element,
i.e., vπ , such that

||v − vπ||0,P + hP|v − vπ|1,P ≤ ChsP|v|s,P, (24)
for some constant C > 0 that may only depend on the polynomial degree k and the mesh regularity constant %.

An instance of such a local polynomial approximation is provided by the L2-projection Π0
kv onto the local polynomial

space Pk(P), which necessarily satisfies the (optimal) error bound:

||v −Π0
kv||0,P + hP|v −Π0

kv|1,P ≤ ChsP|v|s,P, (25)

for some constant C > 0 that may only depend on the polynomial degree k and the mesh regularity constant %.

Furthermore, consider the internal side σ ∈ S0
h and let P± be the two elements sharing σ, so that σ = ∂P+ ∩ ∂P−.

We denote Ωσ = P+ ∪ P−. Then, for every w ∈ Hs(Ωσ) with 1 ≤ s ≤ k + 1, the L2-projection Π0,σ
k v onto Pk(σ),

the space of polynomials of degree k on side σ, satisfies the error estimate

||v −Π0,σ
k v||0,σ + hσ|v −Π0,σ

k v|1,σ ≤ Ch
s− 1

2
σ |v|s,Ωσ . (26)

The same estimate holds also for the boundary sides σ ∈ S∂h by taking Ωσ = P, the element to which σ belongs.

Interpolation error. Similarly, under mesh regularity assumptions (A0), we can define an interpolation operator in
V hk having optimal approximation properties. Therefore, for every v ∈ Hs(P) with 1 ≤ s ≤ k + 1 we can find the
local interpolate vI ∈ V hk (P), which is the virtual element function that has the same degrees of freedom of v on the
mesh element P. The interpolate vI is an approximation of v and the approximation error in the L2 and H1 norms is
estimated as

||v − vI||0,P + hP|v − vI|1,P ≤ ChsP|v|s,P, (27)
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where C > 0 is a positive constant independent of h.

3.5. Virtual element semi-discretization

The discrete bilinear forms ah(·, ·) and mh(·, ·) are given by the sum of elemental contributions

mh(uh, vh) =
∑

P∈Ωh

mP
h (uh, vh), (28)

ah(uh, vh) =
∑

P∈Ωh

aPh (uh, vh), (29)

where

mP
h (uh, vh) = mP(Π0

kuh,Π
0
kvh) + SP

m

(
(I −Π0

k)uh, (I −Π0
k)vh

)
, (30)

and

aPh (uh, vh) = aP(Π∇k uh,Π
∇
k vh) + SP

a

(
(I −Π∇k )uh, (I −Π∇k )vh

)
, (31)

and SP
m(·, ·) and SP

a (·, ·) can be any two symmetric and positive definite bilinear forms such that

µ̂∗ (vh, vh)P ≤ S
P
m(vh, vh) ≤ µ̂∗ (vh, vh)P ∀vh ∈ V hk (P) with Π0

kvh = 0, (32)

for some pair of positive constants µ̂∗ and µ̂∗, and

α̂∗a
P(vh, vh) ≤ SP

a (vh, vh) ≤ α̂∗aP(vh, vh) ∀vh ∈ V hk (P) with Π∇k vh = 0, (33)

for some pair of positive constant α̂∗ and α̂∗. From the conditions above it follows immediately that SP
m(·, ·) scales

like (·, ·)P, i.e., SP
m(·, ·) ' hdP, and, similarly, that SP

a (·, ·) scales like aP(·, ·), i.e., SP
a (·, ·) ' hd−2

P .

The discrete bilinear forms mh(·, ·) and ah(·, ·) need to satisfy the following properties:
- k-consistency: for all vh ∈ V hk and for all q ∈ Pk(P) it holds

mP
h (vh, q) = (vh, q)P , (34)

aPh (vh, q) = aP(vh, q); (35)

- stability: there exists two pairs of positive constants (µ∗, µ
∗) and (α∗, α

∗), independent of h and P, such that

µ∗ (vh, vh)P ≤ m
P
h (vh, vh) ≤ µ∗ (vh, vh)P ∀vh ∈ V hk , (36)

α∗a
P(vh, vh) ≤ aPh (vh, vh) ≤ α∗aP(vh, vh) ∀vh ∈ V hk . (37)

In particular, the first term in the definition of mP
h in (30) and aPh in (31) provides the k-consistency, and, hence,

determines the accuracy of the method; the second one ensures its stability (see also [6]). For both bilinear forms,
the k-consistency property follows immediately from definitions (30) and (31) since the stabilization terms are zero
whenever one of their entries is a polynomial. Stability easily follows from a straightforward calculation by taking
µ∗ = max(1, µ̂∗), µ∗ = min(1, µ̂∗), α∗ = max(1, α̂∗), and α∗ = min(1, α̂∗), cf. [7].

We assume that the right-hand side of (4) is given by the sum of local contributions:

〈fh, vh〉 =
∑
P∈Ωh

(
Π0
kf, vh

)
P , (38)

where on each element P we approximate f by its L2-orthogonal projection Π0
kf on the polynomials of degree up

to k. We use the same local projection to approximate the nonlinear dependence of f on the solution u in its first
argument; hence,

f(u, t) ≈ fh(uh, t) := Π0
kf(Π0

kuh, t).
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α1 α0 α−1 α−2 α−3 β

BDF1 1 −1 1

BDF2 1 − 4
3

1
3

2
3

BDF3 1 − 18
11

9
11

− 2
11

6
11

BDF4 1 − 48
25

36
25

− 16
25

3
25

12
25

Table 1. Coefficients of the BDFs method used in the full discrete approximation (41).

Each local term is fully computable for any nonlinear integrable function f(u, t) and any function vh in V hk since the
orthogonality property implies that(

Π0
kf(Π0

kuh, t), vh
)

P =
(
Π0
kf(Π0

kuh, t),Π
0
kvh
)

P =
(
f(Π0

kuh, t),Π
0
kvh
)

P ,

and both Π0
kuh and Π0

kvh are computable from their degrees of freedom. Using the L2-orthogonal projection in the
numerical treatment of the right-hand side does not change its regularity. Indeed, for any two functions vh, wh ∈ V hk
the continuity of the orthogonal projection Π0

k implies that

||fh(vh, t)− fh(wh, t)||P = ||Π0
kf(Π0

kvh, t)−Π0
kf(Π0

kwh, t)||P =
∣∣∣∣Π0

k

(
f(Π0

kvh, t)− f(Π0
kwh, t)

)∣∣∣∣
P

≤ ||f(Π0
kvh, t)− f(Π0

kwh, t)||P, (39)

and the Lipschitz continuity of fh follows from the Lipschitz continuity of f .
Let N dofs denote the number of degrees of freedom of the VEM. For the symmetry and stability conditions of the

bilinear forms ah and mh and the regularity assumption on fh, there exist a set of eigenvalues in increasing orders

0 < λ
(1)
h ≤ . . . ≤ λ

(N dofs)

and corresponding eigenfunctions
{
ω

(i)
h

}N dofs

i=1
, which form an orthonormal basis of V hk with respect to mh(·, ·), such

that

ah(ω
(i)
h , vh) = λ

(i)
h mh(ω

(i)
h , vh) vh ∈ V hk , for i = 1, . . . , N dofs.

The unique solvability of the virtual element approximation (8)-(9) is stated by the following theorem.
Theorem 3.4 Problem (8)-(9) has a unique solution given by:

uh(t) =

N dofs∑
i=1

(
mh(uh,0, ω

(i)
h )e−λ

(i)

h
t +

∫ t

0

〈fh(uh, τ), ω
(i)
h 〉e

−λ(i)(t−τ)
h dτ

)
ω

(i)
h .

3.6. Time-stepping scheme

Here, we briefly describe the time-stepping BDF scheme for our problem. An introduction to these schemes can be
found in several textbooks such as [49]. BDF schemes are implicit linear multi-step methods for ordinary differential
equations that at any given time approximate the derivative uh,t(t) by using the values of uh(t) from previous time-
steps, thereby increasing the accuracy of the approximation. The semi-discrete approximation leads to a system of
ordinary differential equation in the indipendent variable t, which formally reads as

duh(t)

dt
= F

(
t, uh(t)

)
, (40)

where vector uh(t) collects all the time dependent degrees of freedom of unknown virtual element approximation
uh(t) and the right-hand side term F

(
t, uh(t)

)
collects the constributions from the discrete bilinear form ah(uh(t), ·)

and the right-hand side (fh(t), ·) of equation (8). To discretize this equation with respect to the time variable t, we
denote the time-step by ∆tn and the value of the virtual element approximation uh(tn) at time tn = n∆tk for any
integer n ≥ 0 by unh . Then, we approximate the time-derivative of uh(t) and the right-hand side of (40) as follows:

uh,t(t
n) ≈ 1

∆tn

1∑
l=−s+1

αlu
n+l
h = βF (tn+1, un+1

h ), (41)
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where αl and β are the coefficients of the s-stage BDF, denoted by BDF(s), and are chosen so that the combined
BDF(s)-VEM(k) method may achieve optimal accuracy. These coefficients are given in Table 3.6, where we use the
notation BDFs for s = 1, . . . , 4 to denote the number of steps s of the method. Note that BDF1 corresponds to the
backward Euler scheme.

4. Error analysis

We introduce the energy projection Ph : H1
0 (Ω)→ V hk such that for every u ∈ H1

0 (Ω), the virtual element function
Phu is the solution of the variational problem:

ah(Phu, v) = a(u, vh) ∀vh ∈ V hk . (42)

The energy projection Phu is an approximation of u and an estimate of the corresponding approximation error is
provided by the following lemma.
Lemma 4.1 Let u ∈ Hs+1(Ω)∩H1

0 (Ω), with 1 ≤ s ≤ k, be the solution of problem (42) under the mesh assumptions
of Section 3.1. Then, there exists a unique function Phu ∈ V hk such that

|u− Phu|1,h ≤ Chs|u|s+1. (43)

Moreover, if domain Ω is H2-regular, it holds that

||u− Phu||0 ≤ Chs+1|u|s+1. (44)

In both equations, the symbol C denotes a positive constant that is independent of h, but may depend on the mesh
regularity factor γ and the stability constants α∗, α∗, µ∗, µ∗.
Proof. The arguments of this proof are similar to those used in the proof of [52, Lemma 3.1], where the conforming
VEM is considered for the approximation of the parabolic problem. However, our proof differs in several points due
to the nonconforming nature of the space V hk considered in this work. In particular, a conformity error appears in the
analysis that must be properly estimated.

First, we note that the bilinear form ah(·, ·) is continuous and coercive on V hk × V hk , the linear functional a(u, ·) is
continuous on V hk , and the Lax-Milgram Lemma implies that the solution Phu to problem (42) exists and is unique.

Then, to prove estimate (43), we introduce the virtual element interpolate uI of u, which is the function in V hk that
has the same degrees of freedom of u and satisfies the error estimate provided by inequality (27). A straightforward
application of the triangular inequality yields:

|u− Phu|1,h ≤ |u− uI|1 + |uI − Phu|1,h, (45)

The first term on the right is estimated by using (27), while to estimate the second term we need the following devel-
opments. Let δh = Phu−uI and uπ the piecewise polynomial approximation of degree k that satisfies inequality (24)
on each element P. Using the k-consistency property, stability, and the continuity of the bilinear forms ah and a yield
the development chain:

α∗|δh|21,h = α∗a(δh, δh) ≤ ah(δh, δh) = ah(Phu, δh)− ah(uI, δh) = a(u, δh)− ah(uI, δh)

=
∑

P∈Ωh

(
aP(u, δh)− aPh (uI, δh)

)
=
∑

P∈Ωh

(
aP(u− uπ, δh)− aPh (uI − uπ, δh)

)
≤
∑

P∈Ωh

(
|u− uπ|1,P + α∗|uI − uπ|1,P

)
|δh|1,P

≤ max(1, α∗)
(
|u− uπ|1,h + |uI − uπ|1,h

)
|δh|1,h.

Therefore, it holds that

|Phu− uI|1,h ≤
α∗

α∗

(
|u− uπ|1,h + |uI − uπ|1,h

)
,
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and substituting this relation in (45) and applying estimates (27) and (24) to the resulting inequality provides esti-
mate (43).

To derive the estimate in the L2-norm when Ω is an H2-regular domain we consider the weak solution ψ ∈ H1
0 (Ω)

to the auxiliary elliptic equation:

−∆ψ = u− Phu in Ω, (46)

which satisfies the H2 regularity result:

||ψ||2 ≤ C||u− Phu||1. (47)

Let ψI ∈ V hk be the virtual element interpolate of ψ that satisfies estimate (27). We integrate by parts; we note that
[[u ]] = 0 since we have assumed that u is at least in H2(Ω); we use the definition of the energy projection Ph; we
introduce the conformity error that depends on the jumps of Phu at the elements’ sides to find that

||u− Phu||20 =
(
u− Phu, u− Phu

)
=
(
u− Phu,−∆ψ

)
= a(u− Phu, ψ)−

∑
σ∈Sh

∫
σ

∇ψ · [[u− Phu ]] ds

= a(u− Phu, ψ − ψI) + a(u− Phu, ψI) +
∑
σ∈Sh

∫
σ

∇ψ · [[u− Phu ]] ds

= T1 + T2 + T3. (48)

The proof continues by estimating each term Ti, i = 1, 2, 3, separately.
The first term is bounded as follows:

|T1| = |a(u− Phu, ψ − ψI)| ≤ ||u− Phu||1,h ||ψ − ψI||1,h
≤ Chs|u|s+1 h|ψ|2 ≤ Chs+1|u|s+1||u− Phu||0

where we used the estimate in the energy norm (43) derived previously and the estimate of the interpolation error (27).
For the second term, first we use the consistency and stability property to transform T2 as follows:

T2 = a(u, ψI)− a(Phu, ψI) =
∑

P∈Ωh

(
aPh (Phu, ψI)− aP(Phu, ψI)

)
=
∑

P∈Ωh

(
aPh (Phu− uπ, ψI −Π0

1ψ)− aP(Phu− uπ, ψI −Π0
1ψ)
)
.

Then, we add and subtract u and ψ and use estimates (24) and (27) to obtain

|T2| ≤ max(1, α∗)
∑

P∈Ωh

|Phu− uπ|1,P|ψI −Π0
1ψ|1,P

≤ max(1, α∗)
∑

P∈Ωh

(
|Phu− u|1,P + |u− uπ|1,P

) (
|ψI − ψ|1,P + |ψ −Π0

1ψ|1,P
)

≤ C
∑

P∈Ωh

hsP|u|s+1,P h|ψ|2,P ≤ Chs+1|u|s+1||ψ||2

≤ Chs+1|u|s+1||u− Phu||0,

and the bound of T2 is derived by using in the final step the H2-regularity of ψ.

To bound the conformity error we first rewrite the integrals of the jumps as follows:

T3 =
∑
σ∈Sh

∫
σ

∇ψ · [[Phu ]] ds =
∑
σ∈Sh

∫
σ

(
I −Π0,σ

0

)
∇ψ ·

(
I −Π0,σ

0 )[[u− Phu ]] ds.

Then, we use the Cauchy-Schwarz inequality, we apply the error estimate of the orthogonal projection of the traces
on each side σ ∈ Sh, and we use the estimate in the energy norm (43) previously derived:
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|T3| ≤
∑
σ∈Sh

||(I −Π0,σ
1

)
∇ψ · nσ||0,σ||

(
I −Π0,σ

0 )[[u− Phu ]] · nσ||0,σ

≤ C
∑
σ∈Sh

h
1
2
σ |∇ψ|1,Ωσh

1
2
σ |u− Phu|1,Ωσ ≤ Chs+1||ψ||2|u|s+1 ≤ Chs+1|u|s+1||u− Phu||0.

Note that we did not used the result of Lemma 3.2, since had we done that we would have lost the extra convergence
factors hs from the estimate in the energy norm of u− Phu.

The estimate in the L2-norm is finally proved by collecting the estimates of the three terms Ti, i = 1, 2, 3, derived
above.

Theorem 4.2 Let u ∈ Hs+1(Ω), with 1 ≤ s ≤ k, be the solution of problem (4)-(5) and uh ∈ V hk be the virtual
element approximation to u solving (8)-(9) under the mesh assumptions of Section (3.1). Then, if the domain Ω is
H2-regular, there exists a positive constant C independent of h such that

||u(t)− uh(t)||0 ≤ ||u0 − uh,0||0 + Chs+1
(
|u0|0 + ||ut||L2(0,t;Hs+1(Ω)) + ||u||L2(0,t;Hs+1(Ω)) (49)

+ ||f ||L2(0,t;Hs+1(Ω))

)
+ Chs||u||L2(0,t;Hs+1(Ω)) (50)

for almost every t in (0, T ]. The constant C may depend on the final time T , the mesh regularity constant γ and the
stability constants α∗, α∗, µ∗, µ∗.
Proof. Consider θh(t) = uh(t)− Phu(t), ρh(t) = Phu(t)− u(t), and the decomposition:

uh(t)− u(t) =
[
uh(t)− Phu(t)

]
+
[
Phu(t)− u(t)

]
= θh(t) + ρh(t). (51)

Lemma 4.1 allows us to estimate the projection error ρh(t) for a.e. t ∈ (0, T ]:

||ρh(t)||0 ≤ Chs+1|u(t)|s+1

≤ Chs+1
∣∣∣u(0) +

∫ t

0

ut(τ) dτ
∣∣∣
s+1

≤ Chs+1

(
|u0|s+1 +

∫ t

0

|ut(τ)|s+1 dτ

)
≤ Chs+1

(
|u0|s+1 +

√
T

(∫ t

0

|ut(τ)|2s+1 dτ

) 1
2

)
= Chs+1

(
|u0|s+1 + |ut|L2(0,t;Hs+1(Ω))

)
, (52)

where the final constant C absorbs the factor
√
T .

To bound term θh(t), we start with the error equation:

mh(θh,t(t), vh) + ah(θh(t), vh) = (fh(uh, t), vh)−mh(dPhu(t)/ dt, vh)− ah(Phu(t), vh)

= (fh(uh, t), vh)−mh(Phut(t), vh)− a(u(t), vh)

= (fh(uh, t), vh)−mh(Phut(t), vh) +m(ut(t), vh)− (f(u, t), vh)−Nh(u(t), vh)

=
[
(fh(uh, t)− f(u, t), vh)

]
+
[
m(ut(t), vh)−mh(Phut(t), vh)

]
+
[
−Nh(u(t), vh)

]
= T1 + T2 + T3.

The proof continues by bounding the three terms separately. To ease the notation, we introduce the symbols u = Π0
ku

and uh = Π0
kuh. The continuity of the projection operator Π0

k implies that ||u−uh||0 = ||Π0
k(u−uh)||0 ≤ ||u−uh||0.

We transform term T1 as follows by using the definition of fh and adding and subtracting Π0
kf(u, t) and Π0

kf(u, t)
to the inner product arguments:
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T1 =
∑

P∈Ωh

(fh(uh, t)− f(u, t), vh)P =
∑

P∈Ωh

(Π0
kf(uh, t)− f(u, t), vh)P

=
∑

P∈Ωh

([(
Π0
kf(uh, t)−Π0

kf(u, t), vh
)

P

]
+
[(

Π0
kf(u, t)−Π0

kf(u, t), vh
)

P

]
+
[(

Π0
kf(u, t)− f(u, t), vh

)
P

])
= T1,1 + T1,2 + T1,3. (53)

Then, we bound each sub-term T1,i with i = 1, 2, 3 separately. To bound the first sub-term, we use the Cauchy-
Schwarz inequality, the continuity of the projection operator twice, the property that f is Lipschitz continuous, and
the previous estimate on the projection error:

|T1,1| ≤
∑

P∈Ωh

|(Π0
kf(uh, t)−Π0

kf(u, t), vh)P| ≤
∑

P∈Ωh

||Π0
k(f(uh, t)− f(u, t))||0,P||vh||0,P

≤
∑

P∈Ωh

||f(uh, t)− f(u, t)||0,P||vh||0,P ≤ C
∑

P∈Ωh

||uh(t)− u(t)||0,P||vh||0,P

≤ C
∑

P∈Ωh

||uh(t)− u(t)||0,P||vh||0,P ≤ C||uh(t)− u(t)||0||vh||0.

We use the Cauchy-Schwarz inequality, the boundedness of the projection operator, the property of f of being Lips-
chitz continuous, and the estimate of the projection error to bound the second sub-term:

|T1,2| ≤
∑

P∈Ωh

∣∣(Π0
k(f(u, t)− f(u, t)), vh)P

)∣∣ ≤ ∑
P∈Ωh

||Π0
k(f(u, t)− f(u, t))||0,P||vh||0,P

≤
∑

P∈Ωh

||f(u, t)− f(u, t)||0,P||vh||0,P ≤
∑

P∈Ωh

||u(t)− u(t)||0,P||vh||0,P

≤
∑

P∈Ωh

||(I −Π0
k)u(t)||0,P||vh||0,P ≤ C

∑
P∈Ωh

hs+1
P |u(t)|s+1,P||vh||0,P

≤ Chs+1|u(t)|s+1||vh||0
We use the Cauchy-Schwarz inequality and the estimate of the projection error to bound the third sub-term:

|T1,3| ≤
∑

P∈Ωh

(Π0
kf(u, t)− f(u, t), vh)P ≤

∑
P∈Ωh

||(I −Π0
k)f(u, t)||0,P||vh||0,P

≤ C
∑

P∈Ωh

hs+1
P |f(u, t)|s+1,P||vh||0,P ≤ Chs+1|f(u, t)|s+1||vh||0.

Collecting the estimates above yields this bound for T1:

|T1| ≤ C
(
||uh(t)− u(t)||0 + hs+1

(
|u(t)|s+1 + ||f(t)||s+1

))
||vh||0. (54)

We bound the second term of (53) as follows by using the k-consistency property, the Cauchy-Schwarz inequality
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T2 =
∑

P∈Ωh

(
mP(ut(t), vh)−mP

h (Phut(t), vh)
)

=
∑

P∈Ωh

(
mP(ut(t)−Π0

kut(t), vh)−mP
h (Phut(t)−Π0

kut(t), vh)
)

≤ C
∑

P∈Ωh

(
||ut(t)−Π0

kut(t)||0,P + ||(Phut(t)−Π0
kut(t)||0,P

)
||vh||0,P

≤ C
∑

P∈Ωh

(
||ut(t)−Π0

kut(t)||0,P + ||Phut(t)− ut(t)||0,P + ||ut(t)−Π0
kut(t)||0,P

)
||vh||0,P

≤ C
∑

P∈Ωh

hs+1
P |ut(t)|s+1,P||vh||0,P

≤ Chs+1|ut(t)|s+1||vh||0. (55)

We bound the third term of (53) by using the result of Lemma 3.2

|T3| = |Nh(u, vh)| ≤ hs|u|s+1||vh||0. (56)

Collecting the estimates of the three bounds yield:

mh(θh,t(t), vh) + ah(θh(t), vh) ≤ C
(
||uh(t)− u(t)||0 + hs+1

(
|u(t)|s+1 + |ut(t)|s+1 + ||f(t)||s+1

)
+ hs|u(t)|s+1

)
||vh||0. (57)

Now, from the stability of mh and ah it follows that

µ∗
1

2

d

dt
||θh(t)||20 = µ∗m(θh,t(t), θh(t)) ≤ mh(θh,t(t), θh(t)) ≤ mh(θh,t(t), θh(t)) + ah(θh(t), θh(t))

and setting vh = θh(t) in (57) yields:

µ∗
1

2

d

dt
||θh(t)||20 ≤ C||θh(t)||0

(
||u(t)− uh(t)||0 + hs+1

(
|ut(t)|s+1 + |u(t)|s+1 + |f(u, t)|s+1

)
+ hs|u(t)|s+1

)
.

Then, we substitute ||u(t)− uh(t)||0 ≤ ||θh(t)||0 + ||ρh(t)||0 and we find that

µ∗
1

2

d

dt
||θh(t)||20 ≤ C||θh(t)||20 + C||θh(t)||0

(
||ρh(t)||0 + hs+1

(
|ut(t)|s+1 + |u(t)|s+1 + |f(u, t)|s+1

)
+ hs|u(t)|s+1

)
.

Using the Young inequality we find

µ∗
1

2

d

dt
||θh(t)||20 ≤ C||θh(t)||20 + C 1

2
||θh(t)||20 + C 1

2

(
||ρh(t)||0 + hs+1

(
|ut(t)|s+1 + |u(t)|s+1 + |f(u, t)|s+1

)
+ hs|u(t)|s+1

)2

≤ C||θh(t)||20 + C 1

2
||θh(t)||20 + C 1

2

(
||ρh(t)||20 + h2(s+1)

(
|ut(t)|2s+1 + |u(t)|2s+1 + |f(u, t)|2s+1

)
+ h2s|u(t)|2s+1

)
.

In view of the bound of ρh(t) given by (52) and using the Gronwall’s lemma (and taking the square root of both sides)
we finally find that

||θh(t)||0 ≤ ||θh(0)||0 + Chs+1
(
||ut||L2(0,t;Hs+1(Ω)) + ||u||L2(0,t;Hs+1(Ω)) + ||f(u, t)||L2(0,t;Hs+1(Ω))

)
+ Chs||u||L2(0,t;Hs+1(Ω)).
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Since

||θh(0)||0 ≤ C
(
||uh,0 − u0||0 + hs+1|u0|s+1

)
we have

||θh(t)||0 ≤ C
(
||uh,0 − u0||0
+ hs+1

(
|u0|s+1 + ||ut||L2(0,t;Hs+1(Ω)) + ||u||L2(0,t;Hs+1(Ω)) + ||f(u, t)||L2(0,t;Hs+1(Ω))

)
+ hs||u||L2(0,t;Hs+1(Ω))

)
The assertion of the theorem follows by combining the estimates for ρh(t) and θh(t).

Theorem 4.3 Let u be the solution of problem (4)- (5) and uh the virtual element approximation solving (8)-(9).
Then, for almost every t ∈ (0, T ] the following estimate holds:

|u(t)− uh(t)|1,h ≤ |uh,0 − u0|1,h + Chs
(
|u0|s+1 + ||ut||L2(0,t;Hs+1(Ω))

)
(58)

+ Chs+1
(
||f ||L2(0,t;Hs+1(Ω)) + h||ut||L2(0,t;Hs+1(Ω))

)
. (59)

Proof. Consider again θh(t) = uh(t)− Phu(t), ρh(t) = Phu(t)− u(t), and the error decomposition:

|uh(t)− u(t)|1,h ≤ |θh(t)|1,h + |ρh(t)|1,h. (60)

Using the result of Lemma 4.1 we find that

||ρh(t)||0 ≤ Chs|u(t)|s

≤ Chs
∣∣∣u(0) +

∫ t

0

ut(τ) dτ
∣∣∣
s

≤ Chs
(
|u0|s +

∫ t

0

|ut(τ)|s dτ
)

≤ Chs
(
|u0|s +

√
T

(∫ t

0

|ut(τ)|2s dτ
) 1

2

)
= Chs

(
|u0|s + |ut|L2(0,t;Hs(Ω))

)
, (61)

where the final constant C absorbs the factor
√
T . By setting vh = θh,t(t) in (57) it follows that

mh(θh,t(t), θh,t(t)) + ah(θh(t), θh,t(t)) ≤ C
(
||uh(t)− u(t)||0 + hs+1

(
|u(t)|s+1 + |ut(t)|s+1 + ||f(u, t)||s+1

)
+ hs|u(t)|s+1

)
||θh,t(t)||0.

From the stability properties of the bilinear forms given in (36) and (37) we see that

mh(θh,t(t), θh,t(t)) ≥ µ∗m(θh,t(t), θh,t(t)) = µ∗||θh,t||20,

ah(θh(t), θh,t(t)) =
1

2

d

dt
ah(θh(t), θh(t)) ≥ α∗

2

d

dt
a(θh(t), θh(t)) =

α∗
2

d

dt
|θh|21,h,

and using these relations and the Hölder inequality we find that

µ∗||θh,t||20 +
1

2

d

dt
|θh(t)|21,h ≤ C

(
||uh(t)− u(t)||0 + hs+1

(
|u(t)|s+1 + |ut(t)|s+1 + ||f(u, t)||s+1

)
+hs|u(t)|s+1

)
||θh,t||0

≤ C
ε

(
||uh(t)− u(t)||0 + hs+1

(
|u(t)|s+1 + |ut(t)|s+1 + ||f(u, t)||s+1

)
+hs|u(t)|s+1

)2

+ Cε||θh,t||20

≤ C
ε

(
||uh(t)− u(t)||20 + h2(s+1)

(
|u(t)|2s+1 + |ut(t)|2s+1 + ||f(u, t)||2s+1

)
+h2s|u(t)|2s+1

)
+ Cε||θh,t||20.
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(a) (b) (c)

Fig. 1. Base mesh (top row) and first refinement (bottom row) of the three mesh families: (a) remapped hexagonal mesh; (b) randomly distorted
quadrilateral mesh; (c) non-convex regular mesh.

By properly setting ε we may remove ||θh,t||20 from the inequality above. Then, we integrate in time to obtain:

|θh(t)|21,h ≤ |θh(0)|21,h + C
∫ t

0

||uh(s)− u(s)||20 ds+ Ch2(s+1)

∫ t

0

(
|u(t)|2s+1 + |ut(t)|2s+1 + ||f(u, t)||2s+1

)
ds

+ Ch2s

∫ t

0

|u(t)|2s+1 ds.

The assertion of the theorem follows by using the estimate for ||uh(t) − u(t)||0 provided by Theorem 4.2 and
|θh(0)|1,h = |uh(0) − Phu(0)|1,h = |uh,0 − Phu0|1,h provided by Lemma 4.1 (cf. (43)), and finally taking the
square root of both sides.

5. Numerical Results

The numerical experiments of this section are aimed at confirming the convergence rates predicted by the a priori
analysis developed in the previous sections. In a preliminary stage, the consistency of the numerical method, i.e. the
exactness of these methods for polynomial solutions, has been tested numerically by solving the elliptic equation with
boundary and source data determined by the monomials u(x, y) = xµyν on different set of polygonal meshes and for
all possible combinations of nonnegative integers µ and ν such that µ+ ν ≤ 3. In all the cases, the magnitude of the
errors was of the order of the arithmetic precision, thus confirming the consistency of the VEM.

To study the accuracy of the method we solve the time-dependent heat equation on the domain Ω =]0, 1[×]0, 1[.
The forcing term and the Dirichlet boundary conditions are set in accordance with the exact solution

u(x, y) =
(

sin(2πx) sin(2πy) + x5 + y5
)

cos(2πt/T ) (62)

The performance of the VEM developed in this paper is investigated by evaluating the rate of convergence on three
different sequences of unstructured meshes, labeled byM1,M2, andM3, respectively. The top panels of Fig. 1 show
the first mesh of each sequence and the bottom panels show the mesh of the first refinement.

The meshes in M1 are the dual mesh of the mesh obtained by remapping the position (x̂, ŷ) of the nodes of a
uniform square partition of Ω by the smooth coordinate transformation [41]:
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x = x̂+ (1/10) sin(2πx̂) sin(2πŷ),

y = ŷ + (1/10) sin(2πx̂) sin(2πŷ).

The meshes inM2 are obtained by randomly displacing the nodes of a regular mesh of squares. The meshes inM3 are
obtained by filling the computational domain with a suitably scaled non-convex octagonal reference cell. The meshes
are parametrised by the number of partitions in each direction. The starting mesh of every sequence is built from
a 5 × 5 regular grid, and the refined meshes are obtained by doubling this resolution. Time integration is provided
by coupling the VEM of order k with the marching scheme using the BDF of order k + 1 in the method of lines
framework.

All errors are reported in Figs. 2, 3, and 4, and are labeled by a circle for k = 1, squares for k = 2, and diamonds for
k = 3. Each figure shows the relative errors in the L2 norms (left panels) and the H1 norms (right panels). Moreover,
the error curves are plotted with respect to the maximum diameter of the discretization in the top panels and with
respect to the total number of degrees of freedom in the bottom panels. The expected slopes of the convergence curves
are shown directly on the plots. The numerical results confirm the theoretical rate of convergence.

6. Conclusions

The virtual element method (VEM) is a numerical methodology for solving partial differential equations on un-
structured polytopal meshes. A nonconforming high-order formulation suitable to time-dependent diffusion problems
with possibly nonlinear forcing terms is designed and investigated theoretically and numerically. This formulation
combines the high-order VEM in space with high-order time-marching schemes based on backward differention for-
mulas in the method of lines framework. Optimal convergence rates are derived through the theoretical analysis and
confirmed by a set of numerical experiments.
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[28] S. Berrone, S. Pieraccini, and S. Scialò. Towards effective flow simulations in realistic discrete fracture networks.
Journal of Computational Physics, 310:181–201, 2016.

[29] S. Bertoluzza, M. Pennacchio, and D. Prada. Bddc and feti-dp for the virtual element method. Calcolo, 54:1565–
1593, 2017.
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[49] E. Süli and D. F. Mayers. An introduction to numerical analysis. Cambridge University Press, Cambridge, UK,
2003.

[50] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems, volume Lecture Notes in Mathematics,
1054 of Springer Series in Computational Mathematics 25. Springer Berlin Heidelberg, 2nd ed edition, 1997.

[51] O. C̆ertı́k, F. Gardini, G. Manzini, and G. Vacca. The virtual element method for eigenvalue problems with
potential terms on polytopic meshes. Applications of Mathematics, 63(3):333365, 2018.

[52] G. Vacca and L. Beirão da Veiga. Virtual element methods for parabolic problems on polygonal meshes. Nu-
merical Methods for Partial Differential Equations. An International Journal, 31(6):2110–2134, 2015.

[53] P. Wriggers, W. T. Rust, and B. D. Reddy. A virtual element method for contact. Computational Mechanics,
58(6):1039–1050, 2016.

[54] J. Zhao, S. Chen, and B. Zhang. The nonconforming virtual element method for plate bending problems. Math-
ematical Models & Methods in Applied Sciences, 26(9):1671–1687, 2016.

21


